A dynamic and on-line ensemble regression for changing environments

نویسندگان

  • Symone G. Soares
  • Rui Araújo
چکیده

On-line learning in environments and applications with time-varying behavior pose serious challenges. Changes may lead the learning model designed with old data, to become inconsistent with the new data, so that adaptation strategies are necessary. Unfortunately, most adaptation strategies are performed only on a batch basis, i.e. after accumulating certain number of samples. This process usually requires a long time, and thus such data may not reflect the current state of the system. However, even the learning system is adapted on a sample basis, most existing on-line learning algorithms adapt slowly to the abrupt changes. To overcome these drawbacks, a new dynamic and on-line ensemble regression (DOER) with fast adaptation capability for on-line prediction of variables given on a sample basis is proposed in this paper. DOER brings together desired properties which are not given by the previous works on on-line ensemble for regression: (1) on-line inclusion and removal of models to keep only the most accurate models with respect to the current state of the system; (2) dynamic adaptation of the models’ weights based on their on-line predictions on the recent samples; and (3) on-line adaptation of the models’ parameters. The accuracy of each model is obtained using a sliding window that is filled with the predictive errors of the most recent samples. Based on the model’s accuracies, weights are dynamically assigned, where accurate models are heavily weighted. When a new sample is available, all the models are retrained, and a new model may be included if the ensemble’s performance is not satisfactory. Inaccurate models can be removed for reducing the computational costs. Experiments on synthetic and real-world data sets are reported to evaluate the effectiveness of the DOER. Results show that DOER offers faster adaptation capability when compared to the state-of-the-art approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction

A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are timevarying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to provide better generalization performance than single models in changing environments. However, most on-line ensembles do not include and exclu...

متن کامل

A context-sensitive dynamic role-based access control model for pervasive computing environments

Resources and services are accessible in pervasive computing environments from anywhere and at any time. Also, due to ever-changing nature of such environments, the identity of users is unknown. However, users must be able to access the required resources based on their contexts. These and other similar complexities necessitate dynamic and context-aware access control models for such environmen...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Stability Assessment of the Flexible System using Redundancy

In this study, dynamic behavior of a mooring line in a floating system is analyzed by probability approaches. In dynamics, most researches have shown the system model and environments by mathematical expression. We called this process as the forward dynamics. However, there is a limit to define the exact environments because of uncertainty. To consider uncertainty, we introduce the redundancy i...

متن کامل

Evolving Ensemble Fuzzy Classifier

The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015